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A B S T R A C T   

Compared to surface in-situ observations, satellite data on aerosol optical depth (AOD) enables 
area-wide monitoring of tropospheric aerosols. However, coverage and reliability of satellite data 
products depend on atmospheric conditions and surface concentrations have to be retrieved from 
AOD. This study investigates the potential to produce reliable maps of PM2.5 surface concentra-
tions for Germany and parts of the surrounding countries using AOD based on observations by 
three different satellite sensors. For the first time, AOD retrievals from the Sea and Land Surface 
Temperature Radiometer (SLSTR) onboard Sentinel-3A are used together with those from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the two NASA platforms Terra 
and Aqua. We investigate the differences and similarities of the three different satellite products 
in terms of coverage, resolution and algorithmic performances. Based on this analysis we examine 
the suitability and advantage of a combination of these data sets. We can substantiate an increase 
in mean daily coverage from a maximum of 10.2% for the individual products to 16.7% for the 
ensemble product. Using a semi-empirical linear regression model, we derive surface-level PM2.5 
concentrations and attain an overall correlation of 0.76 between satellite-derived and in-situ 
measured PM2.5 concentrations. By considering surface measurements, the systematic error 
(bias) and the root mean square error (RMSE) can be significantly reduced. The general model 
performance is evaluated by a 5-fold cross validation and the relative prediction error (RPE).   

1. Introduction 

Due to its adverse effects on human health, ambient air pollution, including pollutants such as particulate matter, ozone, nitrogen 
dioxide and sulfur dioxide, has become an important field in modern research. Especially in urbanized and industrialized regions 
people are exposed to increased concentrations of harmful substances (European Environment Agency, 2021; World Health Organi-
zation, 2021). Fine particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) was found to be the main pollutant causing 
serious health risks such as respiratory and cardiovascular diseases and even lung cancer (Beelen et al., 2014; Khomenko et al., 2021; 
Kloog et al., 2013; Lelieveld et al., 2020). 

A better understanding of the spatial and temporal distribution of near surface PM2.5 pollution is essential to assess the impact on 
the environment and to estimate potential health risks for the general public and vulnerable groups in particular (Sorek-Hamer et al., 
2016). Therefore, an accurate comprehensive monitoring and mapping of ambient PM2.5 concentrations is necessary. 
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Ground-based in-situ stations provide accurate and frequent measurements of PM2.5 concentrations, but only for selected locations. 
Even with a well-developed station network, the density of measurements is insufficient to attain area-wide coverage of the aerosol 
distribution with its sources and sinks. In order to fill the information gaps between the stations, satellite observations have proven to 
be a valuable complement (Hoff and Christopher, 2009; Van de Kassteele et al., 2006). The aerosol load of the atmosphere is quantified 
by satellite retrievals of the aerosol optical depth (AOD), which describes the extinction of light by aerosol particles when passing 
through the atmosphere. 

Multiple studies were performed to derive ground-level PM2.5 concentrations from columnar AOD measurements for different 
regions worldwide. Most of them focus on the USA and China, only few were performed for Europe, including the Netherlands (Schaap 
et al., 2009), France (Kacenelenbogen et al., 2006), Italy (Di Nicolantonio et al., 2009, 2011) and the UK (Beloconi et al., 2016). Chu 
et al. (2016) published an overview on the different studies, listing the study regions, the used satellite products and the applied 
methods. A recent review article was published by Zhang et al. (2021), including latest methodological developments for PM2.5 
derivation from AOD. The most commonly used methods to derive PM2.5 are observation-based approaches such as simple linear 
correlation (Engel-Cox et al., 2004; Koelemeijer et al., 2006; Toth et al., 2014), multiple linear regression (Kumar et al., 2013; Lai et al., 
2014; Schaap et al., 2009; Zhang and Li, 2015), mixed-effect modelling (Chudnovsky et al., 2013; Kloog et al., 2015; Liu et al., 2007; 
Shi et al., 2016; Xie et al., 2015; You et al., 2015), geographically and temporally weighted regression (He and Huang, 2018; Hu et al., 
2013; Song et al., 2014; Zou et al., 2016), land use regression (Li et al., 2018), Bayesian geostatistical modelling (Beloconi et al., 2018) 
and timely structure adaptive modelling (Fang et al., 2016). In recent years, also machine learning approaches have been developed. 
Chen et al. (2018), for example, used a random forest model to predict historical PM2.5 concentrations in China and Just et al. (2020) 
applied an extreme gradient boosting model to predict daily PM2.5 for 13 states in the northeastern USA. Other methods are based on 
chemical transport modelling using simulations of spatial-temporal varying scaling factors between AOD and PM (Van Donkelaar 
et al., 2010; Wang and Chen, 2016; Xu et al., 2015). Another category of methods are semi-empirical physical based models. They are 
more physically meaningful because they use an empirical relationship between AOD and PM2.5 mass concentration and optical 
properties (Zhang et al., 2021) and incorporate key meteorological parameters (e.g. relative humidity, boundary layer height) to 
address the atmospheric influences on the AOD-PM relationship. Koelemeijer et al. (2006) and Di Nicolantonio et al. (2009) showed 
the suitability of these approaches for parts of Europe and especially for urban/industrial regions. Lin et al. (2015) estimated and 
incorporated main aerosol characteristics (mass extinction efficiency and size distribution) to their semi-empirical model to derive 
PM2.5 concentrations for China. Tian and Chen (2010) employed additional meteorological parameters for their model and found a 
significant improvement in the model predictability for PM2.5 concentrations in Southern Ontario (Canada) by considering surface 
temperature. 

Among the many challenges in deriving PM2.5 concentrations from AOD observations are variations in meteorological conditions, 
aerosol composition and the vertical distribution that can have strong effects on the PM-AOD relationship (Van Donkelaar et al., 2015). 
All mentioned methods have their advantages and disadvantages in taking these effects into account for an accurate derivation and 
prediction of PM2.5 from satellite AOD. 

Beside the applied model and environmental data input, the performance of estimated PM2.5 concentrations also depends on the 
AOD data itself. Issues such as cloud contamination, heterogenous surface conditions or inaccurate retrievals can lead to uncertainties 
in the satellite-retrieved AOD values (Toth et al., 2014; Holzer-Popp et al., 2013). Furthermore, the availability of satellite data is 
limited to cloud-free conditions and certain overpass times (Christopher and Gupta, 2010). Many different AOD datasets were used for 
the estimation of ground-level PM2.5 concentrations, all showing different results (see Chu et al., 2016). The most common AOD 
datasets applied for air quality studies are obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the 
Nasa satellites Terra and Aqua (Levy et al., 2007). Both, the original 10 km resolution MODIS AOD products and the more recent, 
recalculated products with 3 km spatial resolution were deployed and well proven in their suitability for air quality assessments. 
Especially the 3 km products offer high potential for regional pollution studies, as it provides more detail in spatial distribution of 
aerosols. However, the lifetime of MODIS is limited and its expected operation period is already exceeded (Yao et al., 2018). 
Next-generation satellites will replace the well-established instruments in future to continue the long-term data collection. A high 
potential candidate for global aerosol observations is the Sea and Land Surface Temperature Radiometer (SLSTR), which has been 
operating since 2017 onboard the ESA Copernicus Satellite Sentinel-3A (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3- 
slstr). To our knowledge SLSTR AOD data has not been used for studies on PM2.5 derivation so far. 

In this study we examine daily observations of AOD from three satellite sensors and apply a semi-empirical linear regression 
approach to derive surface PM2.5 concentrations for Germany and parts of the surrounding countries. For the first time we therefore 
exploit a recent data set obtained from the Sentinel-3A/SLSTR instrument together with two well-established AOD data sets from the 
MODIS instruments on Terra and Aqua. With the ultimate goal to derive PM2.5 concentrations for Germany at an area-wide coverage to 
examine the spatial distribution and to identify main aerosol sources, we analyse the satellite products with respect to data avail-
ability/coverage and their differences in AOD responses in collocated observations. Based on this analysis the observations are 
combined to an AOD ensemble to improve the representation of spatio-temporal aerosol variability. Using a semi-empirical linear 
regression approach, we evaluate the suitability and the benefit of the AOD ensemble to assess PM2.5 concentrations. 

Section 2 gives a detailed description of the data sets and of the method used for PM2.5 derivation. Results of the comparison 
between the different AOD products are shown in Section 3, as well as the results for the PM2.5 data set derived from the AOD ensemble 
product. Section 4 closes this study with a summary and discussion. 
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2. Methodology and data 

2.1. Satellite-based PM2.5 estimation 

An accurate estimation of ground-level PM2.5 concentrations depends on several factors. Beside the AOD data itself, the relationship 
between ground-level PM2.5 and column integrated AOD depends on aerosol characteristics (e.g. composition, size, vertical distri-
bution) and on meteorological conditions. For the derivation of ground-level PM2.5 concentrations from satellite AOD, we use a semi- 
empirical approach based on the work of Koelemeijer et al. (2006) and Di Nicolantonio et al. (2009). This incorporates key meteo-
rological parameters and presumes some physical knowledge to account for the aforementioned dependencies. The relationship be-
tween PM2.5 and AOD can be written as: 

PM2.5 = τ 4 ρ reff

3 H f (RH) Qext,dry
(1)  

where τ is the satellite-derived AOD, ρ the particle density, reff the effective radius of aerosol particles, Qext, dry the Mie-extinction 
efficiency at dry conditions, H the boundary layer height and RH the surface relative humidity. 

The AOD is a measure of light extinction of the total atmospheric column. Without knowledge about the extinction profile, it is 
difficult to relate the AOD column measurements to surface level aerosol concentrations. Several studies have shown that the majority 
of aerosol particles is distributed in the lower troposphere and are vertically well mixed within the planetary boundary layer (Clarke 
et al., 1996; Kaufman et al., 2003; Sheridan and Ogren, 1999). Assuming the latter, we use the planetary boundary layer height (H) as 
approximation to account for the vertical profile of AOD in our approach. Relative humidity affects the water uptake process of 
aerosols and can cause changes in the aerosol size distribution, chemical composition and particle extinction properties (Liu et al., 
2005). The function f(RH) takes this so-called hygroscopic growth effect into account by describing the increase of the extinction 
cross-section of the aerosol by relative humidity (Koelemeijer et al., 2006). Following the work of Koelemeijer et al. (2006), we used an 
approximated function of RH based on nephelometer measurements by Veefkind et al. (1996). The parameters reff , Qext, dry and ρ 
depend on aerosol composition and size distribution and can be classified by aerosol type. As the target region of our study is assumed 
to be dominated by only one aerosol type (urban industrial – weakly/non-absorbing), we use constant values for these parameters. The 
aerosol type specific values for these parameters are obtained from Levy et al. (2007a) and are consistent with the MODIS AOD 
retrieval. 

To correct the PM2.5 estimates for bias and scaling errors in comparison to in-situ ground measurements, we employ a linear 
regression approach. Regression parameters (slope and intercept) from linear regression between in-situ and satellite-derived PM2.5 
concentrations serve as correction factors. Due to spatially and temporally varying meteorological conditions, local emissions and 
aerosol chemical composition, the relationship between satellite-based and in-situ measured aerosol concentrations changes signifi-
cantly with season and region (Gupta et al., 2006; Zhang et al., 2009). To consider these variations, correction factors were determined 
per station and month. Adding the correction factors to Eq. (1) gives the following regression formula: 

PM2.5corrected =Ai,j*PM2.5 + Bi,j (2) 

Factor A stands for the slope and factor B for the intercept parameter of the linear regression at station i and month j. Correction 
factors were calculated for all of the 350 stations, including all station types (background, industrial, traffic). The correction factors 
were interpolated to a 0.01◦ grid using an inverse distance weighting approach (Stachelek, 2014) to receive monthly correction maps 
for the mapping of PM2.5 concentrations. To consider and estimate the model performance regarding model fitting, a 5-fold cross 
validation was performed. Therefore, we varied the stations considered for the interpolation of the correction parameters. We 
randomly split the station-wise data into five subsets of 70 stations and calculated five sets of correction parameters excluding one of 
the subsets respectively. We determined five different sets of PM2.5 concentration data, which were then averaged to derive our final 
PM2.5 dataset. For statistical analyzes we extracted the data collocated with station measurements, for the averaged final PM2.5 data set 
(training data set) and for the 70 unconsidered stations of the five different PM2.5 sets as test (validation) dataset. 

To evaluate the model performance and to test for potential overfitting, statistical indicators such as root mean square error 
(RMSE), relative prediction error (RPE: RMSE divided by mean predicted PM2.5) and the determination coefficient (R2) were calcu-
lated for both, model and cross validation results. 

2.2. Data sets 

2.2.1. Satellite AOD data sets 
In this study three different satellite AOD (550 nm) data sets were exploited. Two of them are based on measurements by the MOIDS 

instruments onboard the NASA satellites Terra and Aqua, the third is a recent dataset obtained from SLSTR instrument onboard 
Sentinel-3A Copernicus satellite. The satellite sensors and AOD products differ in terms of swath-width, overpass time, aerosol retrieval 
algorithms and resolution and will be briefly described below. 

MODIS radiometers have been in operation since 2000 onboard Terra and since 2002 onboard Aqua, providing retrieval products of 
aerosol and cloud properties with global coverage every single or two days (Levy et al., 2007; Remer et al., 2005). Terra passes the 
equator around 10:30 local time in north-south direction, Aqua at 13:30 in south-north direction. The MODIS instruments measure 
spectral reflectance in 36 spectral bands from the solar to the thermal infrared with a swath width of 2330 km. For the aerosol retrieval, 
seven of these bands in the shortwave are used, and several others for the identification and masking of clouds. Different AOD retrieval 
algorithms are used for land and ocean surfaces in order to account for differences in surface reflectance and the types of aerosol 
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present (Rubin and Collins, 2014). The different retrieval algorithms are described in detail by Remer et al. (2006). For this study we 
used the new MODIS Collection 6.1 dark target AOD datasets with 3 km resolution from Aqua (MYD04_3K) and Terra (MOD04_3K) 
(Levy et al., 2013; Remer et al., 2013). 

The SLSTR instrument is a dual-view imaging radiometer with a swath width of 1400 km in nadir view and 740 km in the along- 
track view. SLSTR collects reflectance data in nine spectral bands from 0.555 to 10.85 μm since the year 2017. There are several 
algorithms for the AOD retrieval, details can be found in (Popp, 2019). We used the 550 nm-AOD product with 10 km resolution based 
on the Swansea University Algorithm (North and Heckel, 2019). The dual-view method shows robust retrievals for both bright and 
dark surfaces. In contrast to single-view methods (e.g. MODIS), no a priori information on the surface albedo is required for the re-
trievals (Veefkind et al., 1998). This is a great advantage over MODIS where surface brightness exhibits a serious source of uncertainty 
in the AOD retrieval (Munchak et al., 2013; Remer et al., 2013). Sentinel-3A crosses the equator at 10:30 local time, matching the 
overpass time of Terra. 

In order to pair up the AOD data with other data sets (meteorology and station data), we resampled the orbital AOD data (polygons) 
onto a fixed regular longitude latitude grid covering Germany and its direct surrounding (see Fig. 1). Following the study and 
recommendation of Sun et al. (2018) and the application of Müller et al. (2022) we use an output grid of 0.01◦ × 0.01◦ for the tiling of 
the observations. For the given data this resolution is considered adequate to represent the information content of the irregular pixel 
polygons for any further averaging i.e. temporal aggregation procedure. We have not filtered the original AOD data based on any 
quality assurance flags and produced daily resampled AOD maps for each satellite product. 

To improve the AOD coverage and data base for our analyses we combined the three data sets by averaging all available obser-
vations per pixel before deriving PM2.5 concentrations. According to Guo et al. (2020) and Ma et al. (2014), we first extracted the pixel 
data, where all three products are available and performed a linear regression to obtain the relationship between the three products on 
a seasonal basis. We started matching up Aqua/MODIS and Terra/MODIS datasets by using this obtained linear relationship to predict 
the AOD values for grid cells where only one of the products is available. We then repeated the procedure matching up the combined 
MODIS product with SLSTR AOD. The pixel values of the final AOD product thus are averages of three different pixel values (per day). 
We call it combined AOD or rather ensemble. 

2.2.2. Ground-based PM2.5 measurements 
The European Environment Agency (EEA) collects and publishes air quality data from in-situ measurement stations all across 

Fig. 1. Number of valid AOD retrievals (top) and mean AOD values (bottom) for the year 2018 derived from Aqua/MODIS, Terra/MODIS and SLSTR instruments.  

J. Handschuh et al.                                                                                                                                                                                                    



Remote Sensing Applications: Society and Environment 26 (2022) 100716

5

Europe. The data for certain species can be downloaded per year and country at https://discomap.eea.europa.eu/map/fme/ 
AirQualityExport.htm. Most of the stations provide up-to-date data on hourly basis (E2a data sets), but the completeness of the 
data differs significantly from station to station. For our study we use all available PM2.5 measurements of the E2a data sets for the year 
2018 and the region from 46◦N to 56◦N and 2◦E to 16◦E. This region comprises in total 350 stations in Germany (175), Poland (3), 
Czech Republic (32), Austria (24), Switzerland (1), France (54), Belgium (35), Luxembourg (4) and the Netherlands (24). We use daily 
mean PM2.5 values per station in this study. Some stations already provide daily averages. For stations with hourly data, we calculated 
the daily average using all available measurements, when these consist of at least six hourly values. 

2.2.3. Meteorological data 
Meteorological data for Europe is provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). We use the 

Atmospheric Model high resolution 10-day forecast (SetI - HRES) data set with 0.1◦ resolution for daily information on Boundary Layer 
Height (BLH) and Relative Humidity (RH) for the greater Germany region. The downloaded data sets include daily values for a single 
timestep (12am, matching the mean overpass time of the satellites) interpolated to a grid with 0.01 × 0.01◦ latitude-longitude spatial 
resolution. 

3. Results 

3.1. Comparison of Aqua/MODIS, Terra/MODIS and SLSTR 

Three different AOD data sets were examined to eventually derive surface PM2.5 concentrations over Germany and parts of the 
surrounding countries for the year 2018. As described above these datasets differ in terms of spatial resolution, the underlying AOD 
retrieval algorithm, overpass time and the sampling rate due to different swath-widths. While the MODIS datasets share the same 
retrieval algorithm and spatial resolution, they have a time difference in overpass of 3 h. The SLSTR data set is based on a dual-view 
mechanism and a different aerosol retrieval algorithm. It has a coarser resolution than the MODIS data sets, but shares the same 
overpass time with Terra/MODIS. Since a better understanding of the characteristics of the AOD observations is a prerequisite for our 
study, we first investigate the differences and similarities of the three satellite products. 

3.1.1. AOD and coverage 
Fig. 1 gives an overview on the absolute coverage (number of measurements) of the satellite products and the mean AOD distri-

bution for the year 2018. In general, the MODIS data sets show higher numbers of measurements with averages of 39 ± 13 and 49 ± 15 
measurements per grid cell for Aqua and Terra, respectively. This correspond to 10.7% and 13.4% of the possible daily measurements 
for one year. SLSTR provides 20 ± 9 measurements on average, which corresponds to 5.5% of all days. This can be mainly explained by 
the much smaller swath width of SLSTR, compared to the MODIS sensors. Each sensor exhibits spatial variations in the number of 
measurements which are more pronounced for the MODIS datasets with standard deviations for the mean number of measurements of 
13 measurements for Aqua/MODIS and 15 measurements for Terra/MODIS compared to 9 measurements for SLSTR. The least covered 
region is the Alpine area due to snow cover and frequently cloudy conditions. In general, a correlation between the number of 
measurements and the orography was found. For example, the mountainous regions in central Germany show also lower number of 
measurements for all sensors. In addition, the low numbers of MODIS observations over optically bright surfaces, such as cities or 
agricultural areas, become obvious. Striking examples in this context are the city of Hamburg in northern Germany and the agricultural 
valley east of Paris. This demonstrates the algorithmic limitations of the applied MODIS products in this study and shows the advantage 
of the SLSTR dual-view mechanism and retrieval algorithm, as these surface dependent minima cannot be found in the SLSTR 
coverage. 

Fig. 2 displays the total number of grid cells with AOD values per day for the year 2018 and reflects the differences in the daily 

Fig. 2. Total daily number of AOD measurements for 2018 obtained from Aqua/MODIS, Terra/MODIS and SLSTR.  
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coverage between the three satellite sensors. Overall Terra/MODIS shows the best coverage with a maximum number of measurements 
for most of the days in 2018. On average, Terra/MODIS covers 10.2% of the study region each day compared to Aqua/MODIS and 
SLSTR with 7.8% and 4.3% mean daily coverage, respectively. 

For all three sensors there are many days with no or very few measurements. Very pronounced is the gap in Aqua/MODIS data in 
May 2018 where technical issues prohibited data transmission. In general, all sensors have the lowest coverage in the winter season 
where weather conditions (snow cover) and the presence of clouds limit satellite measurements in the visual range. The timeseries 
shows (and comparisons of daily AOD maps which are not shown here) that Terra/MODIS and Aqua/MODIS are more similar in their 
day-by-day coverage than Terra/MODIS and SLSTR. This indicates a dominating influence of the swath-width and AOD-retrieval 
algorithm on the daily data availability compared to different overpass times i.e. temporal variability. Comparisons of daily AOD 
maps reveal that not only the daily number of measurements varies a lot but also the regions covered by these measurements. Thus, 
even when the satellite sensors i.e. the applied retrieval methods deliver the same number of pixels a day they can provide different 
spatial information. 

The mean AOD values at 550 nm (Fig. 1) for 2018 show similar main patterns for MODIS and SLSTR throughout the area. Highest 
AODs can be found in eastern Germany and north-east of Paris with values mostly over 0.24. SLSTR and Terra/MODIS AODs are 
generally higher than that of Aqua/MODIS. SLSTR and Terra/MODIS have the same mean AOD value (0.18 ± 0.04), which is about 
22% larger compared to that from Aqua/MODIS (0.14 ± 0.04). Median values are comparable to the mean values for all sensors. In 
general, gradients are clearer visible in the MODIS maps due to the better resolution. It is even possible to locate some isolated aerosol 
hotspots, like in the industrial area around Leipzig in eastern Germany. As the daily spatial information can differ significantly between 
the sensors and in particular between SLSTR and the MODIS products (Fig. 2), the differences in the annual mean maps can be 
misleading and are not necessarily related to differences in data quality or sensitivity. Therefore, we further analyzed the distributions 
and statistical characteristics of the data sets by only considering collocated measurements. The results of the comparison are depicted 
in Fig. 3 as violin plots and in Fig. 4 as timeseries of the monthly mean values for the collocated measurements. Table 1 moreover shows 
related statistical results for comparing the datasets quantitatively. 

The violin plots of the AOD distributions, reveal a similar behavior for all three data sets. The distributions show the majority of 
AOD values in the lower range while the maxima are between 1.61 and 1.84. The unimodal distributions are skewed to the right with 
the median smaller than the mean and differ mainly for AOD <0.1. The inter quartile range is almost the same for all datasets with 
values of 0.16 for Aqua/MODIS and 0.15 for Terra/MODIS and SLSTR. The mean and medians are close (Table 1) with a maximum 
difference of 0.02 in median between SLSTR and Aqua/MODIS and in mean between Aqua/MODIS and Terra/MODIS considering all 
collocations in 2018. Differences in the annual mean maps though, seem to result from different daily information for the grid cells and 
not in differences of the sensor performances, as supposed before. Fig. 4 illustrates the monthly variation of mean AOD values for the 
three data sets. For most of the year, the mean values are very close to each other and lie within the standard deviations. Only in spring- 
time higher deviations between SLSTR and the MODIS data sets can be observed. The best agreements between the datasets occur in 
summer and autumn. 

From the above analysis, all data sets show comparable characteristics and can therefore all be used for PM2.5 derivation. What is 
more, a combination of all three data sets could bring advantages with respect to coverage, resolution and sensitivity. For example, 
SLSTR has restrictions regarding coverage and spatial resolution, whereas MODIS delivers data in a higher spatial resolution with 
better daily coverage. On the other hand, MODIS data is limited over bright surfaces (e.g. cities) due to algorithmic limitations. It is 
hoped that this restriction can be at least partly reduced by using complementary SLSTR data. In the following we will therefore 
combine all three data sets to derive more complete and more reliable AOD maps. 

Fig. 3. Violin plots for all daily and spatially overlapping pixels (collocations) in 2018.  
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3.1.2. AOD ensemble 
For the combination of the AOD data sets we averaged all daily available AOD values from the completed AOD data set (see 

regression procedure in section 2.2.1) for the target region. We have not filtered or weighted the data sets for this calculation, as we are 
not able to quantify which dataset is the closest to the truth. As tentative quality measure we rely on the absolute differences in the 
monthly mean AOD values (Fig. 4). Total difference means here, we consider the maximum difference per day, independent from the 
dataset providing the minimum or maximum value. The mean monthly, seasonal and annual differences are presented in Fig. 5. As 
discussed in the previous section, the differences are in general not extensive, with a mean annual difference of about 0.07. The only 
season with differences over 0.1 were found for spring-time and in particular the months of March and April. 

On average, the ensemble product covers 16.7% of the study region each day which is nearly twice the daily coverage of the 

Fig. 4. Monthly mean AOD values for collocated observations of Aqua/MODIS, Terra/MODIS and SLSTR.  

Table 1 
Statistics based on collocations between AOD measurements of Aqua/MODIS, Terra/MODIS and SLSTR – Median, mean, standard deviation (STD) and number of 
collocations (N).    

2018 Spring Summer Autumn Winter 

Median AQUA 0.13 0.15 0.14 0.09 0.06 
TERRA 0.15 0.17 0.16 0.12 0.09 
SLSTR 0.15 0.19 0.15 0.10 0.15 

Mean AQUA 0.16 0.17 0.17 0.12 0.07 
TERRA 0.18 0.18 0.19 0.14 0.10 
SLSTR 0.17 0.20 0.18 0.12 0.15 

STD AQUA 0.12 0.12 0.13 0.11 0.05 
TERRA 0.12 0.11 0.13 0.10 0.06 
SLSTR 0.12 0.11 0.13 0.08 0.07 

N  3456216 553797 2301938 575950 24521  

Fig. 5. Absolute differences between daily collocated mean AOD values on annual, seasonal and monthly basis.  
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individual products. Maps of seasonal mean AOD distributions are depicted in Fig. 6. Thanks to the consideration of all available 
observations in the combined data set, the maps are almost completely covered, i.e. by more than 96% in spring, summer and autumn. 
Only in the winter period with a coverage of 76% there are still larger gaps. An annual cycle can be observed in the AOD distributions, 
with higher values in spring and summer. Corresponding mean AOD values are 0.19 ± 0.03 and 0.21 ± 0.03 for spring and summer, 
respectively, compared to 0.12 ± 0.02 for autumn and 0.15 ± 0.05 for the winter season. Strongest spatial variation can be found for 
winter with a standard deviation of 0.05. The regions with higher aerosol load in the East and near Paris, which could be identified in 
the annual mean maps (Fig. 1), can be found in all seasons, but are more extensive in spring and autumn. 

3.2. Ground-level PM2.5 concentrations 

Based on the combined AOD data set daily PM2.5 data sets were generated. As described in section 2.1 we first derived PM2.5 
concentrations using the physical relationship given in equation (1) and corrected it in a second step for seasonal and location specific 
bias and scaling errors using in-situ measurements. To highlight the effect of correction by in-situ measurements, Fig. 7 shows hexbin 
plots between in-situ and satellite-derived PM values before and after the correction. Table 2 gives the corresponding statistical 
assessment. We included all collocations between stations and satellite measurements for the year 2018. 

PM values directly derived from satellite AOD show strong overestimations compared to in-situ data with a bias of 26.3 μg/m3, and 
the correlation with station measurements is rather low with an R-value of 0.31. After the correction the bias is reduced significantly 
(0.2 μg/m3), but stays positive, indicating that the satellite based PM2.5 values are on average still a bit higher than the in-situ- 
measurements. The scatterplot shows, that the corrected PM2.5 values are a bit more underestimated in the higher value range 
after the correction. Anyway, the overall agreement with in-situ data is strongly improved. We now obtain a correlation coefficient of 
0.76. Mean and median values are reduced by more than 60% and also standard deviation and RMSE are strongly reduced by the 

Fig. 6. Seasonal mean AOD maps based on the AOD ensemble product for 2018.  
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correction. Before the correction our model could explain only about 10% of the variability in the in-situ measurements, after per-
forming the correction our model can explain 57% of the variability. This is a significant improvement. 

What is more, the seasonal statistics have also improved with the correction of the model in terms of bias, correlation and RMSE. 
The seasonal correlations with in-situ data are between 0.62 in winter and 0.78 in autumn. Especially interesting is the change in the 
bias for the winter season. The negative bias after the model correction indicates an overcorrection of the PM2.5 concentrations in 
winter. This can be explained by the very small sample size for the station-wise linear regression procedure. For January and December 
there are even less than 10 stations for which the correction parameters could be calculated, leading to higher uncertainties in the 
interpolated correction maps. In summer the correlation is lower and the bias is higher, compared to spring, while the sample size in 
summer is higher. This suggests, that there are more measurements in summer that were not properly corrected. The satellite-based 
mean PM2.5 concentrations are between 10.2 ± 2.7 μg/m3 in summer and 19.3 ± 7.9 μg/m3 in winter, whereas standard deviation in 
winter is almost three times higher than in summer. This can maybe be attributed to the number of collocations. Higher standard 
deviations seem to be correlated with lower numbers of collocations (see Table 2). 

Validation results are also given in Table 2. Correlations are by 0.12 lower for the validation data set than for the final data set, 
indicating a weaker performance of our model for independent data. The mean values of the predicted PM2.5 concentrations are 
comparable between test and training data sets, medians are even almost the same for all seasons. R2 is 26% lower for the validation 
data set with a value of 0.42 compared to 0.57 for the complete year 2018. At the same time RMSE and RPE are with 6.4 μg/m3 and 
47% higher for the validation data set. This indicates that our model is slightly overfitted. 

Fig. 8 shows the seasonal mean maps of the corrected satellite-based PM2.5 concentrations. The PM2.5 distributions look slightly 
different compared to the AOD distributions. Still high polluted areas are visible, but we can also see some seasonal anti-correlations 
between AOD and PM2.5. The most striking example is the summer season. Fig. 6 showed maximum AOD values for this season, but 

Fig. 7. Hexbin plots between in-situ (EEA) and satellite-based (Ensemble) PM2.5 before (left) and after (right) the correction including all collocations for the 
year 2018. 

Table 2 
Statistics based on collocations between in-situ (EEA) and satellite-based (SAT) PM2.5 concentrations before and after the correction and for the independent validation 
data set. Number of collocations (N), correlation coefficient (R), root mean square error (RMSE), bias, determination coefficient (R2), relative prediction error (RPE), 
mean, median and standard deviation (Std).   

N R RMSE 
μg/m3 

Bias 
μg/m3 

R2 RPE % Mean SAT 
μg/m3 

Std SAT 
μg/m3 

Median SAT 
μg/m3 

Mean EEA 
μg/m3 

Std EEA 
μg/m3 

Median EEA 
μg/m3 

PM2.5 

2018 26168 0.31 36.3 26.3 0.09 91.9 39.5 26.3 33.2 13.2 8.3 11.5 
Winter 1328 0.28 25.9 15.2 0.08 74.6 34.7 21.1 30.7 19.6 11.6 17.6 
Spring 6797 0.34 37.3 29.2 0.12 84.8 44.0 24.8 37.9 14.8 8.9 13.0 
Summer 9943 0.25 40.5 29.5 0.06 103. 39.5 28.6 31.8 9.9 4.9 9.7 
Autumn 8100 0.46 31.1 21.8 0.21 85.2 36.5 24.9 30.9 14.7 9.1 12.6 
PM2.5 corrected 
2018 26168 0.76 5.5 0.2 0.57 41.4 13.3 6.1 11.7 13.2 8.3 11.5 
Winter 1328 0.62 9.1 − 0.3 0.39 47.2 19.3 7.9 18.6 19.6 11.6 17.6 
Spring 6797 0.71 6.2 0.1 0.51 41.6 14.9 6.3 13.4 14.8 8.9 13.0 
Summer 9943 0.65 3.8 0.3 0.42 37.3 10.2 2.7 10.0 9.9 4.9 9.7 
Autumn 8100 0.78 5.7 0.3 0.60 38.3 14.9 6.8 13.3 14.7 9.1 12.6 
PM2.5 corrected - validation 
2018 26168 0.65 6.4 0.4 0.42 47.0 13.5 5.6 11.8 13.2 8.3 11.5 
Winter 1328 0.48 10.2 − 0.9 0.23 54.5 18.7 6.5 18.3 19.6 12.0 17.6 
Spring 6797 0.58 7.3 0.3 0.34 48.3 15.1 5.9 13.4 14.8 8.9 13.0 
Summer 9943 0.4 4.5 0.4 0.16 43.3 10.4 2.2 9.9 9.9 4.9 9.7 
Autumn 8100 0.69 6.6 0.5 0.48 43.4 15.2 6.0 13.7 14.7 9.1 12.6  
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ground-level PM2.5 concentrations have their minimum in summer. This anticorrelation is caused by the consideration of the boundary 
layer height as a vertical measure of the aerosol distribution. In Europe, the boundary layer extension is usually much higher in 
summer than in the cold season (Seidel et al., 2012). As we assume a homogeneous vertical mixing of the aerosol along the full vertical 
extend of the boundary layer, higher AOD values result in lower ground-level PM2.5 concentrations in summer. On the contrary, in the 
cold season where the boundary layer is rather flat, high AOD values result in even higher PM2.5 concentrations. 

Overall the PM2.5 maps in Fig. 8 enable an overview on the seasonal amount and transnational distribution of fine aerosol particles 
near the surface. In winter we find in general the highest PM2.5 concentrations over most areas with a mean value of 18.7 ± 4.3 μg/m3 

compared to 14.6 ± 2.0 μg/m3, 10.3 ± 0.8 μg/m3 and 14.7 ± 2.4 μg/m3 for spring summer and autumn, respectively. We assume that 
these are mainly caused by heating activities in the cold season. In spring the region east of Paris is one of the most polluted areas. It is 
especially dominated by agricultural emissions and is a leader region for mineral fertilization causing high PM2.5 concentrations from 
March to August (Viatte et al., 2020). Moreover, the orography can cause an accumulation of aerosol in valleys. 

In autumn, eastern Germany, Poland and Czech Republic are higher polluted. These areas are also strongly impacted by agricultural 
emissions which may explain the observed pattern (Lelieveld et al., 2015). Long-range transport from sources in eastern Europe can be 
another explanation. 

Annual mean PM2.5 concentrations for 2018 are presented in Fig. 9. Due to the small number of measurements, the winter season 
has a very small contribution to the annual mean PM2.5 pattern. The annual PM2.5 values range from 7.9 μg/m3 to 28.9 μg/m3 with a 
mean value of 13.1 ± 1.4 μg/m3. The dots in Fig. 9 present station wise correlations including all collocations for the year 2018. 
Overall the correlations are satisfactory, especially in the eastern part of the target region, where the coverage is comparatively good 
(see Fig. 1). We cannot find a systematic behavior regarding the geo-specific performance of our approach. On the other hand, for some 

Fig. 8. Seasonal mean PM2.5 concentrations (corrected) derived from the AOD ensemble product for 2018.  
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regions, correlations are significantly lower, for example, in the Netherlands and the area around Luxembourg. These areas are maybe 
dominated by specific aerosol types which are not well reproduced with our method (e.g. higher portion of sea salt aerosol). Overall, 
the good agreement between the estimated and in-situ measured PM2.5 concentrations supports the main assumptions of our approach 
and demonstrates that ground-level PM2.5 concentrations can be successfully derived from the 3-sensor AOD ensemble. 

4. Summary and discussion 

We examined the differences and similarities of collocated AOD footprints from Terra/MODIS, Aqua/MODIS and SLSTR on a daily 
basis and could show a similar behavior of all three datasets. All data sets have their advantages and disadvantages in terms of 
coverage, resolution and algorithmic performance. The MODIS sensors have provided reliable aerosol retrievals for decades and are 
still operational. However, its predicted operation time is already exceeded and the sensors underlie some instrumental degradation, 
causing a decline of data quality over time (Lyapustin et al., 2014; Yao et al., 2018). Although the AOD retrieval algorithms have been 
improved with Collection 6, this instrumental degradation cannot be eliminated completely. The new SLSTR sensor has provided high 
quality AOD observations since 2017. However, compared to MODIS, the SLSTR AOD product is currently more limited with respect to 
spatial resolution (10 km) and coverage due to the smaller swath width. MODIS data on the other hand, have a higher spatial resolution 
(3 km) and a considerably better daily coverage. However, a drawback of MODIS based dark target retrievals is their limited avail-
ability over bright surfaces (e.g. cities). Consequently, we tried to compensate the individual disadvantages by combining the three 
AOD datasets. This way we kept the positive characteristics of all three datasets and produced a better quality and more complete AOD 
data set with adequate resolution and increased overall coverage. Quantitatively, we could improve the mean daily coverage of 10.2% 
at maximum by the individual sensors to 16.7% for the ensemble product. 

We investigated the performance of a semi-empirical linear regression approach for the estimation of national-scale PM2.5 con-
centrations for Germany and surrounding countries using the three sensor AOD ensemble. To account for the influence of vertical 
structure and hygroscopic growth effect on the relationship between columnar AOD and near-surface PM2.5, AOD values were coupled 
with meteorological parameters (RH, BLH) to derive ground-level PM2.5 concentrations. Furthermore, in-situ measurements were used 
for linear regression to correct the derived PM2.5 values for bias and scaling errors. With this correction, correlations between satellite 
and in-situ data sets could be strongly improved and errors (bias, RMSE) significantly reduced. We received high correlations with in- 
situ data of 0.76, a bias of 0.2 μg/m3 and a RMSE of 5.5 μg/m3 accounting for the entire year 2018 and could produce PM2.5 maps with 
adequate coverage and a spatial resolution which could be highly valuable for regional air quality assessments. 

Most comparable previous studies on deriving PM from satellite AOD used MODIS AOD data with a resolution of 10 km. Depending 
on the method they showed a wide range of R-values between 0.2 and 0.97 for different time periods and regions (Chu et al., 2016). 
Tian and Chen (2010) applied a semi-empirical model, to derive PM2.5 concentrations in Canada. They found correlations of 0.65 using 
MODIS data with 10 km resolution. Also, Di Nicolantonio et al. (2009) used a semi-empirical approach on Aqua/MODIS 10 km AOD 
leading to a correlation of 0.59 between measured and satellite-derived PM2.5 for Northern Italy. 

Our results for Germany, using the higher resolution MODIS datasets combined with the 10 km resolution SLSTR product, in 
general exceed these performances, which is in line with several studies using better-resolved AOD data. Xie et al. (2015) showed an 
improvement in correlations using the 3 km Aqua/MODIS data set for urban-scale PM studies in Beijing, China. Mei et al. (2019) 

Fig. 9. Mean PM2.5 concentration (corrected) for the year 2018 derived from the AOD ensemble product. The colored dots show station wise correlations between the 
satellite-based and in-situ measured PM2.5 concentrations. 
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investigated the effect of AOD resolution on the AOD-PM relationship for different regions in the US and found a positive effect on 
correlations when using higher resolution AODs for several spatial scales ranging from urban to continental scale. Also, Chudnovsky 
et al. (2013a) showed an increased correlation between AOD and PM2.5 concentrations with increased spatial resolution in the USA. 
The results demonstrate the benefit of the MODIS 3 km AOD products for air quality studies on urban and regional scales, because it 
provides much more detail in spatial variability. Wu et al. (2019) analyzed the AOD-PM2.5 relationship at spatial scales ranging from 
40 m to 5 km in China. They found that correlations are generally higher at finer spatial scales in a range between 1 km and 5 km. On 
scales smaller than 1 km correlations fluctuated irregularly which they attributed to scale mismatches between AOD and PM2.5 
measurements. These results reveal, that the benefit of higher resolution AOD products for PM2.5 estimations prevail only at a certain 
range, i.e. between 3 km and 1 km spatial resolution. 

In general, the quality of the AOD data has a strong effect on the quality of PM estimates. Both, the accuracy of the retrieval al-
gorithms and the amount of sampling data play a role. The accuracy of an aerosol retrieval algorithm is linked to the ability to decouple 
individual aerosol and surface contributions to the top of atmosphere reflectance observed by the satellite sensor (Holzer-Popp et al., 
2013; Mei et al., 2019). Algorithmic limitations of the retrieval of AOD over bright and highly reflective surfaces (e.g. urban and 
agricultural areas, coastal regions) cause less reliability in contrast to AOD retrievals over dark surfaces (Sorek-Hamer et al., 2015) for 
most of the common satellite sensors. Dark target algorithms make use of reflectance differences between the aerosol and the un-
derlying surface by assuming a dark surface (Levy et al., 2013). Over bright surfaces this assumption is not applicable and the algo-
rithms fail. The MODIS 3 km AOD products are especially affected by this issue (see Munchak et al., 2013; Remer et al., 2013). Hence, 
accuracy and amount of MODIS AOD data is reduced over brighter surfaces and we could clearly observe the latter effect in our study 
(Fig. 1). Here, dual-view instruments like SLSTR have a significant advantage, because uncertainties due to the underlying surface 
brightness are reduced. The dual-view capability of the instrument allows AOD estimation without a priori assumptions on surface 
spectral reflectance, like “dark targets” (North and Heckel, 2019; Popp, 2019). With the combination of the AOD datasets we tried to 
compensate for this drawback of the MODIS datasets by adding the SLSTR data set which contains appropriate information for those 
regions where MODIS data is limited. 

One critical point about our method to derive surface PM2.5 concentrations is the station- and month-wise calculation of the 
correction parameters. On the one hand, this is a good practice to reproduce the spatial and temporal variation of local aerosol sources 
and meteorological conditions which affect the AOD-PM relationship. On the other hand, the quality and representativeness of the 
calculations strongly depend on the amount of data available per month and station. Although we could improve the database for the 
linear regression procedure by using the AOD ensemble product, there are still some time periods and locations, where lacks of the data 
base considerably reduce the quality of the correction parameters and thus of the resulting PM2.5 values. 

Another critical point about our method is the assumption of a single aerosol type. Although, it is matching the aerosol type used for 
the MODIS AOD retrieval for the target region (Levy et al., 2007a), aerosols can vary significantly with season and region (Putaud 
et al., 2004). In fact, we clearly see a seasonal variation in the correlations, which could be an indication of changing aerosol type. 
However, although Germany can be clearly separated in regions with different background conditions due to locally dominating 
emission sources (urban and coastal areas, mountainous and industrial regions, etc.), we do not find too much spatial variation in the 
accuracy of PM2.5 estimates. Overall, we conclude that the spatial variation of aerosol composition and size does not have an important 
effect for monthly PM2.5 aggregations over Germany, and that our assumption of a constant (urban-industrial) aerosol type is in general 
valid. In addition, we assume that our seasonal and location-specific correction method compensates to a certain extent for possible 
effects of aerosol-type variation within the country. 

An exception was found for great parts of the Netherlands where correlations between the estimated and measured PM2.5 con-
centrations were considerably lower compared to the rest of the study region. Schaap et al. (2009) found an important influence of 
aerosol type on the AOD-PM relationship in the Netherlands, due to strongly varying contributions of sea salt to the total aerosol mass 
in different parts of the country. We thus conclude, that our assumption of constant aerosol type is especially not valid for regions, with 
high portions of sea salt like the North Sea. 

Other studies revealed a much more important effect of regionally differing aerosol types and climatic conditions on AOD-PM 
relationships. For the USA, e.g. Al-Saadi et al. (2005) found a large variation between the eastern and western part of the country. 
These regions strongly differ regarding aerosol composition and climatic conditions. 

Although the results of our study are promising so far, we found some drawbacks in the application of our method to derive PM2.5 
surface concentrations from AOD and see room for improvement. The inclusion of additional meteorological parameters, such as 
surface temperature and wind, land use information or population related parameters could bring further improvement (e.g. Kloog 
et al., 2015; Zheng et al., 2016). The use of a linear mixed effects model, would allow the simultaneous consideration of these different 
kinds of variables for the linear regression using the whole data set(s) not split for month or season. Yao et al. (2018), You et al. (2015) 
and Liu et al. (2007) for example received good results using mixed effects models over China and the US. Furthermore, consideration 
of how the vertical distribution of aerosols affects the AOD-PM2.5 relationship should be taken in to account in further studies. 
Therefore, one could use simulations from chemistry-transport models, as was done in a recent study by Yao and Palmer (2021), who 
used statistical and machine learning methods to model AOD-PM2.5 relationships for China. 

As mentioned before, the next-generation satellite sensors like SLSTR or VIIRS will take over the role of more established sensors 
like MODIS in the future and will allow to continue long-term global observations (Levy et al., 2015). As a follow-up we would like to 
investigate the performance of a linear mixed effects model for the SLSTR and MODIS AOD product separately and examine the 
sensitivity of different parameters to attain high-quality PM2.5 retrievals from SLSTR and MODIS AOD data. 

Since we considered one year of data only, the results may not be statistically representative for a longer period. However, we 
demonstrated the potential of a combined AOD product from different satellite sensors and retrieval algorithms for the derivation of 
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ground level PM2.5 concentrations. We were able to produce reliable PM2.5 concentration maps for Germany in a sufficient resolution 
which could be highly valuable for regional air quality assessments. 
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